Add like
Add dislike
Add to saved papers

Enhanced HIF2α expression during human trophoblast differentiation into syncytiotrophoblast suppresses transcription of placental growth factor.

Scientific Reports 2017 September 30
Placental growth factor (PlGF), abundantly produced from trophoblasts is involved in placental angiogenesis. The regulatory mechanism of its expression is poorly understood. Hypoxia inducible factors (HIFs) are centrally involved in the modulation of cellular function in response to low oxygen conditions. This study aimed to clarify HIF1α and HIF2α expression patterns during cytotrophoblast differentiation into syncytiotrophoblast and the impact of any changes on PlGF expression. HIF proteins were induced remarkably under low oxygen condition (2%). HIF1α expression decreased and HIF2α expression increased when syncytialization of cultured cytotrophoblasts is progressed. Those expression changes of HIF proteins in the process of in-vitro syncytialization was congruent with the immunohistochemical findings in preeclamptic placenta as well as uncomplicated placenta. Low oxygen condition was also associated with reduced PlGF production in syncytializing primary cells and BeWo choriocarcinoma cells. Small interfering RNA-mediated HIF2α knockdown in BeWo cells abrogated hypoxia-associated decreases in PlGF secretion; HIF1α silencing had no significant effect on PlGF secretion. In summary, HIF2α, rather than HIF1α, is most affected by reduced oxygen level during syncytialization and increases in HIF2α trigger a reduction of PlGF production. Our findings suggest new and important connections between HIF proteins and PlGF pathways in the regulation of placental angiogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app