Add like
Add dislike
Add to saved papers

CAPS2 deficiency affects environmental enrichment-induced adult neurogenesis and differentiation/survival of newborn neurons in the hippocampal dentate gyrus.

Neuroscience Letters 2017 November 21
Hippocampal adult neurogenesis is observed in the subgranular zone of the dentate gyrus (DG), and is associated with hippocampal memory formation and several psychiatric disorders including autism spectrum disorder (ASD). Calcium-dependent activator protein for secretion 2 (CAPS2) is a candidate gene related to ASD, and is highly expressed in the hippocampal DG region, with Caps2 knockout (KO) mice exhibiting ASD-like behavior. Accordingly, CAPS2 is potentially associated with hippocampal adult neurogenesis, the relationship between CAPS2 and adult neurogenesis has not yet been investigated. Here, we determined whether deficit of the Caps2 gene affects hippocampal adult neurogenesis and maturation of newborn neurons. To induce adult neurogenesis, we used the environmental enrichment (EE) condition. Both wild-type (WT) and Caps2 KO mice were housed in control or EE conditions for 3 or 14days. Hippocampal levels of brain-derived neurotrophic factor (BDNF) can be used as a physiological EE conditioned marker, and were increased at 14days in the EE condition in both WT and KO mice. Newborn cells during control and EE conditions were labeled by BrdU, and the labeled cells co-immunostained with the immature and mature neuron markers, calretinin (CR) and NeuN. The ratio of CR/BrdU and NeuN/BrdU double positive cells to all of BrdU positive cells were significantly increased in WT mice housed in the EE condition for 14days compared with the control condition. Whereas KO mice in the EE condition showed no significant increase of newborn neurons. These findings suggest that CAPS2 deficiency strongly impairs hippocampal adult neurogenesis and maturation of newborn neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app