Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

Mitochondrial DNA "common deletion" in post-fine needle aspiration infarcted oncocytic thyroid tumors.

Human Pathology 2017 November
Thyroid fine needle aspiration (FNA) can rarely induce morphological changes potentially hindering the histopathological diagnosis, especially in Hurthle cell tumors (HCTs), which may easily undergo post-FNA infarction or necrosis. HCTs contain mitochondrion (mt)-rich cells that may bear mtDNA mutations, the most frequent being the so-called common deletion (CD). The aim of this study was to determine the presence and extent of the mtDNA CD in a series of thyroid HCTs that underwent extensive infarction following FNA procedure in comparison with a control series of HCTs lacking post-FNA ischemic/hemorrhagic alterations. Of 257 HCTs with available matched FNA and surgical specimens, 8 cases showed extensive (≥80%) infarction or necrosis in the resected nodule (4 adenomas, 1 carcinoma, 3 HCTs undefined for malignancy). Noninfarcted tumors in the control series included 9 adenomas, 1 carcinoma, and 1 follicular tumor of uncertain malignant potential. These lesions were significantly (P = .03) larger than infarcted nodules. The mtDNA CD was identified using semiquantitative real-time polymerase chain reaction in 2 of 8 (25%) infarcted tumors. In HCTs lacking infarction/necrosis of the control series, the CD was significantly (P = .05) more common (8/11 cases, 72.7%). In 7 of the 10 deleted cases, the CD was present also in the adjacent nonneoplastic parenchyma. In conclusion, the rare oncocytic tumors undergoing extensive infarction are smaller than those lacking ischemic changes and bear the mtDNA CD in a significantly lower proportion compared with control noninfarcted HCTs. This may suggest that mtDNA deletion confers a survival advantage to oncocytic cells in stress conditions, including FNA procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app