Add like
Add dislike
Add to saved papers

Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C.

New Biotechnology 2018 January 26
Research on the enzymatic breakdown of seaweed-derived agar has recently gained attention due to the progress in green technologies for marine biomass utilization. The enzymes known as agarases catalyze the cleavage of glycosidic bonds within the polysaccharide. In this study, a new β-agarase, Aga2, was identified from Cellulophaga omnivescoria W5C. Aga2 is one of four putative agarases from the W5C genome, and it belongs to the glycoside hydrolase 16 family. It was shown to be exclusive to the Cellulophaga genus. Agarase activity assays showed that Aga2 is an endolytic-type β-agarase that produces tetrameric and hexameric neoagaro-oligosaccharides, with optimum activity at 45°C and pH 8.0. Zinc ions slightly enhanced its activity while manganese ions had inhibitory effects even at very low concentrations. Aga2 has a Km of 2.59mgmL-1 and Vmax of 275.48Umg-1 . The Kcat is 1.73×102 s-1 , while the Kcat /Km is 8.04×106 s-1 M-1 . Aga2 also showed good thermostability at 45°C and above, and retained >90% of its activity after repeated freeze-thaw cycles. Bioinformatic analysis of its amino acid sequence revealed that intrinsic properties of the protein (e.g. presence of certain dipeptides and the relative volume occupied by aliphatic amino acids) and tertiary structural elements (e.g. presence of salt bridges, hydrophobic interactions and H-bonding) contributed to its thermostability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app