Add like
Add dislike
Add to saved papers

Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats.

BACKGROUND: Traumatic brain injury (TBI) is one of the major causes of mortality and disability for all ages worldwide. Mesenchymal stem cells (MSCs)-originated exosomes have provided therapeutic effects. However, as an indispensable component of MSCs, whether odontogenic stem cell-generated exosomes could benefit TBI is still unclear. Thus we aimed to explore the potential of stem cells from human exfoliated deciduous teeth-originated exosomes (SHED-Ex) for the management of TBI.

METHODS: First, a transwell system was used to co-culture activated BV-2 microglia cells with SHED. The secretion levels of neuroinflammatory factors and nitrite were evaluated by enzyme-linked immunosorbent assay (ELISA) and Griess assay. Furthermore, purified SHED-Ex were co-cultured with activated BV-2. ELISA, Griess assay, flow cytometry, immunofluorescence, and qRT-PCR were performed to test the levels of inflammatory factors as well as the microglia phenotype. Finally, SHED and SHED-Ex were locally injected into TBI rat models. Basso, Beattie, and Bresnahan (BBB) scores were chosen to evaluate the motor functional recovery. Histopathology and immunofluorescence were performed to measure the lesion volume and neuroinflammation.

RESULTS: As a result, SHED-Ex could reduce neuroinflammation by shifting microglia polarization. The administration of SHED-Ex improves rat motor functional recovery and reduces cortical lesion compared with the control group 2 weeks post-injury (P < 0.05).

CONCLUSIONS: The current study demonstrates for the first time that SHED-Ex contribute a therapeutic benefit to TBI in rats, at least in part by shifting microglia polarization to reduce neuroinflammation. The use of odontogenic stem cells, and indeed their exosomes, may be expanded for the treatment of TBI or other neurological disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app