Add like
Add dislike
Add to saved papers

Doxazosin attenuates renal matrix remodeling mediated by anti-α1-adrenergic receptor antibody in a rat model of diabetes mellitus.

Diabetic nephropathy is a major complication of diabetes mellitus (DM). Recent studies suggest that immunological mechanisms have a key role in the pathogenesis of DM, therefore these mechanisms may be important targets for diabetes therapy. The present study evaluated the effects of anti-α1-adrenergic receptor antibody (α1-R Ab) mediation and doxazosin treatment in a rat model of DM. It was observed that levels of 24-h urinary protein, serum creatinine and transforming growth factor-β1 in DM were significantly increased after α1-R Ab mediation (all P<0.05). In addition, electron microscopy identified severe damage in the renal tissue microstructures of DM rats following α1-R Ab mediation, while only mild abnormalities were observed in that of healthy rats mediated with α1-R Ab and of untreated DM rats. No marked abnormalities were observed in the renal tissue of healthy blank controls. Furthermore, in DM rats treated with α1-R Ab mediation + doxazosin intervention, the expression of TGF-β1 significantly decreased, and renal functions and renal matrix remodeling were significantly improved, relative to untreated DM controls (P<0.01). These results suggest that α1-R Ab may be involved in renal matrix remodeling during DM, and that kidney protection during DM may be achieved through treatment with corresponding receptor antagonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app