Add like
Add dislike
Add to saved papers

Cordycepin inhibits vascular adhesion molecule expression in TNF-α-stimulated vascular muscle cells.

Atherosclerosis is a chronic inflammatory disease, which is associated with the increased expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Cordycepin is one of the major bioactive components of Ophiocordyceps sinensis that has been demonstrated to exert anti-atherogenic activity; however, its molecular mechanisms are poorly understood. The aim of the present study was to examine the in vitro effects of cordycepin on the tumor necrosis factor (TNF)-α-induced suppression of adhesion molecule expression. The results of the present study demonstrated that cordycepin markedly inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in TNF-α-stimulated human aortic vascular smooth muscle cells (HA-VSMCs). Cordycepin significantly inhibited the TNF-α-induced mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) activation (P<0.05), markedly inhibited the TNF-α-induced expression level of nuclear factor (NF)-κB p65 and markedly prevented the TNF-α-associated degradation of IκBα in HA-VSMCs. The results of the present study suggest that cordycepin inhibits the expression of VCAM-1 and ICAM-1 in TNF-α-stimulated HA-VSMCs via downregulating the MAPK/Akt/NF-κB signaling pathway. Therefore, cordycepin may have a potential therapeutic application for preventing the advancement of atherosclerotic lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app