Add like
Add dislike
Add to saved papers

Synergistic antibiotic activity against planktonic and biofilm-embedded Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus oralis.

Objectives: To determine the antimicrobial activity against streptococcal biofilm in species mostly isolated from implant-associated infections and examine the effect of enzyme treatment of biofilm on the antimicrobial activity of different antibiotics.

Methods: The activities of fosfomycin, rifampicin, benzylpenicillin, daptomycin, gentamicin, levofloxacin, proteinase K and their combinations on planktonic and/or biofilm-embedded standard laboratory strains of Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus oralis were investigated in vitro by standard methods and isothermal microcalorimetry.

Results: MIC values obtained for the tested antimicrobials against planktonic bacteria ranged from 0.016 to 128 mg/L for the three species tested. Higher antibiotic concentrations were usually required to reduce biofilm in comparison with planktonic bacteria, with the exception of gentamicin, for which similar concentrations (4-16 mg/L) exerted an effect on both planktonic and biofilm cells. A synergistic effect against the streptococcal biofilm of the three species was observed when gentamicin was combined with benzylpenicillin or with rifampicin. Moreover, antibiotic concentrations comparable to the MIC observed against planktonic cells induced a strong reduction of viable bacteria in proteinase K pre-treated biofilm.

Conclusions: This study shows that the combination of gentamicin with either benzylpenicillin or rifampicin exerts a synergistic effect against biofilms produced by the tested streptococci strains in vitro. Our results also suggest that coupling a dispersal agent with conventional antibiotics may facilitate their access to the bacteria within the biofilm. In vivo and clinical studies are needed in order to confirm whether such a strategy may be effective in the treatment of implant-associated infections caused by streptococci.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app