Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A metal-organic framework based PCR-free biosensor for the detection of gastric cancer associated microRNAs.

We report herein five sensing platforms for the detection of five gastric cancer associated microRNAs (miRNAs). The sensing platforms are hybrids formed from a water-stable metal organic framework (MOF) {[Cu(dcbb)2 (H2 O)2 ]·10H2 O}n (1, H2 dcbbBr=1-(3,5-dicarboxybenzyl)-4,4'-bipyridinium bromide), respectively with five carboxyfluorescein (FAM) labeled probe single-stranded DNA (probe ss-DNA, denoted as P-DNA). Within the hybrid, MOF 1 tightly interacts with the P-DNA through electrostatic and/or π-stacking interactions and results in fluorescence quenching of FAM via a photo-induced electron transfer (PET) process. In the presence of the complementary target miRNAs miR-185, miR-20a, miR-92b, miR-25 and miR-210, which are expressed abnormally in the plasma of gastric carcinoma patients, P-DNA is released from the surface of MOF 1 ascribed to the stronger base pair matching, leading to the FAM fluorescence recovery. Each P-DNA@1 system is effective and reliable for the detection of its complementary target miRNA with the detection limits from 91 to 559pM, and is not interfered by other four miRNA sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app