Add like
Add dislike
Add to saved papers

Selection of DNA Aptamer That Blocks the Fibrillogenesis of a Proteolytic Amyloidogenic Fragment of β 2 m.

Dialysis-related amyloidosis (DRA) is a severe complication of hemodialysis that results in progressive destruction of bones and joints. Elevated concentrations of the β2 -microglobulin (β2 m) level in the serum of subjects on hemodialysis promote the formation of amyloid fibrils in osteoarticular tissues. β2 m lacking the N-terminal six residues of the mature protein (ΔN6β2 m) constitutes 25-30% of β2 m in ex vivo DRA amyloid. Unlike full-length wild-type β2 m, ΔN6β2 m forms amyloid fibrils at neutral pH in vitro. However, the role of ΔN6β2 m in DRA is, at present, poorly understood. In the present study, we screened novel phosphorothioate-modified aptamers directed against ΔN6β2 m using combinatorial chemistry in vitro. We identified 11 ΔN6β2 m aptamers; among the identified aptamers, clone #2, #8, and #10 aptamers had higher binding affinity to ΔN6β2 m than the others. Biolayer interferometry analysis revealed that KD values of clone #2, #8, and #10 aptamers were 56, 23, and 44 nM, respectively. Furthermore, the clone #8 aptamer inhibited fibril formation in a dose-dependent manner, as assessed by Thioflavin T fluorescence assay. Fibrils formed from ΔN6β2 m bind to Congo red, displaying changes in the absorbance spectrum of the dye characteristic of binding to amyloid fibrils, which was completely blocked by treatment with clone #8 aptamer. These results suggest the potential of ΔN6β2 m aptamers as tools for elucidating co-assembly mechanisms in amyloid formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app