Add like
Add dislike
Add to saved papers

CREB Protein Mediates Alcohol-Induced Circadian Disruption and Intestinal Permeability.

BACKGROUND: Alcoholic liver disease (ALD) is commonly associated with intestinal permeability. An unanswered question is why only a subset of heavy alcohol drinkers develop endotoxemia. Recent studies suggest that circadian disruption is the susceptibility factor for alcohol-induced gut leakiness to endotoxins. The circadian protein PER2 is increased after exposure to alcohol and siRNA knockdown of PER2 in vitro blocks alcohol-induced intestinal barrier dysfunction. We have shown that blocking CYP2E1 (i.e., important for alcohol metabolism) with siRNA inhibits the alcohol-induced increase in PER2 and suggesting that oxidative stress may mediate alcohol-induced increase in PER2 in intestinal epithelial cells. The aim of this study was to elucidate whether a mechanism incited by alcohol-derived oxidative stress mediates the transcriptional induction of PER2 and subsequent intestinal hyperpermeability.

METHODS: Caco-2 cells were exposed to 0.2% alcohol with or without pretreatment with modulators of oxidative stress or PKA activity. Permeability of the Caco-2 monolayer was assessed by transepithelial electrical resistance. Protein expression was measured by Western blot and mRNA with real-time polymerase chain reaction. Wild-type C57BL/6J mice were fed with alcohol diet (29% of total calories, 4.5% v/v) for 8 weeks. Western blot was used to analyze PER2 expression in mouse proximal colon tissue.

RESULTS: Alcohol increased oxidative stress, caused Caco-2 cell monolayer dysfunction, and increased levels of the circadian clock proteins PER2 and CLOCK. These effects were mitigated by pretreatment of Caco-2 cells with an antioxidant scavenger. Alcohol-derived oxidative stress activated cAMP response element-binding (CREB) via the PKA pathway and increased PER2 mRNA and protein. Inhibiting CREB prevented the increase in PER2 and Caco-2 cell monolayer hyperpermeability.

CONCLUSIONS: Taken together, these data suggest that strategies to reduce alcohol-induced oxidative stress may alleviate alcohol-mediated circadian disruption and intestinal leakiness, critical drivers of ALD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app