Add like
Add dislike
Add to saved papers

EMPOWERING CORTICAL THICKNESS MEASURES IN CLINICAL DIAGNOSIS OF ALZHEIMER'S DISEASE WITH SPHERICAL SPARSE CODING.

Cortical thickness estimation performed in vivo via magnetic resonance imaging (MRI) is an important technique for the diagnosis and understanding of the progression of Alzheimer's disease (AD). Directly using raw cortical thickness measures as features with Support Vector Machine (SVM) for clinical group classification only yields modest results since brain areas are not equally atrophied during AD progression. Therefore, feature reduction is generally required to retain only the most relevant features for the final classification. In this paper, a spherical sparse coding and dictionary learning method is proposed and it achieves relatively high classification results on publicly available data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 2 dataset ( N = 201) which contains structural MRI data of four clinical groups: cognitive unimpaired (CU), early mild cognitive impairment (EMCI), later MCI (LMCI) and AD. The proposed framework takes the estimated cortical thickness and the spherical parameterization computed by FreeSurfer as inputs and constructs weighted patches in the spherical parameter domain of the cortical surface. Then sparse coding is applied to the resulting surface patch features, followed by max-pooling to extract the final feature sets. Finally, SVM is employed for binary group classifications. The results show the superiority of the proposed method over other cortical morphometry systems and offer a different way to study the early identification and prevention of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app