Add like
Add dislike
Add to saved papers

Inhibition of Hes1 enhances lapatinib sensitivity in gastric cancer sphere-forming cells.

Oncology Letters 2017 October
It has been considered that the neurogenic locus notch homolog protein (Notch) signaling pathway serves an essential role in cellular differentiation, proliferation and apoptosis. However, the function of the Notch signaling pathway in gastric cancer stem cells (GCSCs) and epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) sensitivity remains unclear. The present study aimed to delineate the role of the Notch1 signaling pathway in GCSCs and lapatinib sensitivity. Sphere-forming cells were separated from human gastric cancer MKN45 parental cells. The sphere-forming cells exhibited characteristics of CSCs and higher Notch1 expression compared with that of parental cells. To investigate the role of the Notch1 signaling pathway in GCSCs, the expression of transcription factor Hes1 (Hes1) was knocked down using small interfering RNA against Hes1. It was observed that Hes1 expression was significantly downregulated in knocked down cells. The inhibition of Hes1 suppressed the properties of CSCs, as indicated by significant decreases in the expression of the transcription factor sex determining region Y-box 2, epithelial cell adhesion molecule and the homeobox protein Nanog and reduced spheroid colony formation. In addition, epithelial-mesenchymal transition was significantly impaired in sphere-forming cells following Hes1 knockdown. Furthermore, the inhibition of Hes1 effectively enhanced lapatinib sensitivity in sphere-forming cells. These results suggest that sphere-forming gastric cancer cells possess the characteristics of CSCs, and that the Notch1 signaling pathway serves an essential role in the maintenance of CSCs and lapatinib sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app