Add like
Add dislike
Add to saved papers

Concomitant solubility-permeability increase: Vitamin E TPGS vs. amorphous solid dispersion as oral delivery systems for etoposide.

Vitamin E TPGS (TPGS) has both surfactant and P-glycoprotein (P-gp) inhibitory effects. While surfactants were previously found to cause solubility-permeability tradeoff, TPGS P-gp inhibitory effects may change this unfavorable interplay. The purpose of this research was to investigate the solubility-permeability interplay when using TPGS vs. amorphous solid dispersions (ASD) as oral drug delivery systems for the anticancer, P-gp substrate, lipophilic drug etoposide. The concentration-dependent effects of TPGS (0-100mg/mL) vs. ASD on the solubility of etoposide, as well as the in-vitro (PAMPA) vs. in-vivo (intestinal rat perfusion) permeability of the drug were studied, and the resulting solubility-permeability interplay was analyzed. TPGS above CMC (0.3mg/mL) increased etoposide solubility linearly, and ASD allowed significant supersaturation. Etoposide in-vitro PAMPA permeability decreased markedly with increasing TPGS levels, similarly to the solubility-permeability tradeoff previously defined for surfactants. In contrast, the presence of TPGS significantly increased etoposide in-vivo rat permeability, attributable to P-gp inhibition, similarly to the effect of the potent P-gp inhibitor GF120918 (10µg/mL). High supersaturation achieved via ASD increased the drug's in-vivo permeability to the level obtained by TPGS or GF120918, supporting P-gp saturation. In conclusion, unique pattern of solubility-permeability interplay was found, involving concomitant increase of both the solubility and the permeability, as opposed to the previously reported tradeoff for solubilization methods and the unchanged permeability for supersaturation; P-gp inhibition/saturation by TPGS or by supersaturation allows simultaneous increase of both solubility and permeability, representing a significant advantage of such drug delivery approaches when suitable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app