Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exploring DNA dynamics within oligonucleosomes with coarse-grained simulations: SIRAH force field extension for protein-DNA complexes.

Describing the regulation of chromatin segments by protein recognition events constitute a major goal in biology and biotechnology. Despite astonishing experimental developments, achieving nearly atomistic spatial/temporal resolution on such macromolecular systems remains a big challenge owing to the intrinsic flexibility of large biological assemblies. Although computer simulations have become a reliable complement to experimental techniques, computational cost limits their routine applications to relatively small systems. However, the development of accurate and cost-effective coarse-grained (CG) models helps to bridge the gap between molecular dynamics simulations and biologically relevant scales. Performing an exhaustive search on a set of well-resolved crystallographic protein-DNA complexes, we introduced improvements on the CG SIRAH force field to describe protein-DNA interfaces. Modifications were validated against a set of non redundant structures and applied to the simulation of the longest DNA segment in complex with proteins that has been crystallized to date, i.e. a tetranucleosome. Multimicrosecond simulation of this small chromatin segment evidences a large mobility of the external DNA filaments, which is consistent with results from FRET experiments in solution. Moreover, we found that the sub-microsecond dynamics of DNA is strongly modulated by the quaternary structure, partially overcoming the intrinsic dynamics dictated by the primary structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app