Add like
Add dislike
Add to saved papers

Full inhibition of enzymatic browning in the presence of thiol-functionalised silica nanomaterial.

Food Chemistry 2018 Februrary 16
Darkening processed fruits and vegetables is caused mainly by enzymatic browning through polyphenol oxidase (PPO) action. Accordingly, we explored the potential of four silica-based materials (MCM-41 nanometric size, MCM-41 micrometric size, UVM-7 and aerosil), non-functionalised and functionalised with thiol groups, to inhibit PPO activity in the model system and apple juice. All materials showed relevant performance when immobilising and inhibiting PPO in model systems, and support topology is a main factor for enzyme immobilisation and inhibition. Thiol-containing silica UVM7-SH showed the greatest inactivation, and similar browning values to those obtained by acidification. The enzyme's kinetic parameters in the presence of UVM-7-SH suggested non-competitive inhibition, which indicated that the material interacted with the enzyme, but beyond the active centre. In real systems, UVM-7-SH completely inhibited enzymatic browning in apple juice (cv. Granny Smith and cv. Golden Delicious) up to 9days after 5min of contact.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app