Add like
Add dislike
Add to saved papers

Dietary soy, meat, and fish proteins modulate the effects of prebiotic raffinose on composition and fermentation of gut microbiota in rats.

Soy, meat (mixture of pork and beef), and fish proteins were fed to rats with and without prebiotic raffinose (RAF), and the composition and fermentation of gut microbiota were examined. Bifidobacterium spp. populations were higher, and propionic acid concentration was lower in soy protein-fed than meat protein-fed rats. Likewise, Enterobacteriaceae populations were higher in fish protein-fed rats than other rats. RAF feeding increased Bifidobacterium spp. and decreased Faecalibacterium prausnitzii populations regardless of the dietary protein source. Interactions between dietary proteins and RAF were shown for Lactobacillus spp. and Clostridium perfringens group; the increase of Lactobacillus spp. populations by RAF was seen only for soy protein-fed rats, whereas the reduction of C. perfringens group by RAF was evident in fish and meat protein-fed rats. It is concluded that dietary proteins may differentially modulate the effects of prebiotic oligosaccharides on gut fermentation and microbiota, with differences observed between plant and animal proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app