Add like
Add dislike
Add to saved papers

A Screening System for Evaluating Cell Extension Formation, Collagen Compaction, and Degradation in Drug Discovery.

SLAS Discovery 2018 Februrary
The generation of cell extensions is critical for matrix remodeling in tissue invasion by cancer cells, but current methods for identifying molecules that regulate cell extension formation and matrix remodeling are not well adapted for screening purposes. We applied a grid-supported, floating collagen gel system (~100 Pa stiffness) to examine cell extension formation, collagen compaction, and collagen degradation in a single assay. With the use of cultured diploid fibroblasts, a fibroblast cell line, and two cancer cell lines, we found that compared with attached collagen gels (~2800 Pa), the mean number and length of cell extensions were respectively greater in the floating gels. In assessing specific processes in cell extension formation, compared with controls, the number of cell extensions was reduced by latrunculin B, β1 integrin blockade, and a formin FH2 domain inhibitor. Screening of a kinase inhibitor library (480 compounds) with the floating gel assay showed that compared with vehicle-treated cells, there were large reductions of collagen compaction, pericellular collagen degradation, and number of cell extensions after treatment with SB431542, SIS3, Fasudil, GSK650394, and PKC-412. These data indicate that the grid-supported floating collagen gel model can be used to screen for inhibitors of cell extension formation and critical matrix remodeling events associated with cancer cell invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app