Add like
Add dislike
Add to saved papers

Functional hemispheric asymmetries during the planning and manual control of virtual avatar movements.

Both hemispheres contribute to motor control beyond the innervation of the contralateral alpha motoneurons. The left hemisphere has been associated with higher-order aspects of motor control like sequencing and temporal processing, the right hemisphere with the transformation of visual information to guide movements in space. In the visuomotor context, empirical evidence regarding the latter has been limited though the right hemisphere's specialization for visuospatial processing is well-documented in perceptual tasks. This study operationalized temporal and spatial processing demands during visuomotor processing and investigated hemispheric asymmetries in neural activation during the unimanual control of a visual cursor by grip force. Functional asymmetries were investigated separately for visuomotor planning and online control during functional magnetic resonance imaging in 19 young, healthy, right-handed participants. The expected cursor movement was coded with different visual trajectories. During planning when spatial processing demands predominated, activity was right-lateralized in a hand-independent manner in the inferior temporal lobe, occipito-parietal border, and ventral premotor cortex. When temporal processing demands overweighed spatial demands, BOLD responses during planning were left-lateralized in the temporo-parietal junction. During online control of the cursor, right lateralization was not observed. Instead, left lateralization occurred in the intraparietal sulcus. Our results identify movement phase and spatiotemporal demands as important determinants of dynamic hemispheric asymmetries during visuomotor processing. We suggest that, within a bilateral visuomotor network, the right hemisphere exhibits a processing preference for planning global spatial movement features whereas the left hemisphere preferentially times local features of visual movement trajectories and adjusts movement online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app