Add like
Add dislike
Add to saved papers

Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit.

Optics Letters 2017 August 2
We propose and demonstrate a novel and compact optical-fiber temperature sensor with a high sensitivity and high figure of merit (FOM) based on surface plasmon resonance (SPR). The sensor is fabricated by employing a single-mode twin-core fiber (TCF), which is polished as a circular truncated cone and coated with a layer of gold film and a layer of polydimethylsiloxane (PDMS). Owing to the high refractive index sensitivity of SPR sensors and high thermo-optic coefficient of PDMS, the sensor realizes a high temperature sensitivity of -4.13  nm/°C to -2.07  nm/°C in the range from 20°C to 70°C, transcending most other types of optical-fiber temperature sensors. Owing to the fundamental mode beam transmitting in the TCF, the sensor realizes a high FOM of up to 0.034/°C, more than twice that of SPR sensors based on multimode fiber. The proposed temperature sensor is meaningful and will have potential applications in many fields, such as biomedical and biomaterial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app