Add like
Add dislike
Add to saved papers

Burst-mode thulium all-fiber laser delivering femtosecond pulses at a 1 GHz intra-burst repetition rate.

Optics Letters 2017 October 2
We report on the development of, to the best of our knowledge, the first ultrafast burst-mode laser system operating at a central wavelength of approximately 2 μm, where water absorption and, consequently, the absorption of most biological tissue is very high. The laser comprises a harmonically mode-locked 1-GHz oscillator, which, in turn, seeds a fiber amplifier chain. The amplifier produces 500 ns long bursts containing 500 pulses with 1 GHz intra-burst and 50 kHz inter-burst repetition rates, respectively, at an average power of 1 W, corresponding to 40 nJ pulse and 20 μJ burst energies, respectively. The entire system is built in an all-fiber architecture and implements dispersion management such that output pulses are delivered directly from a single-mode fiber with a duration of 340 fs without requiring any external compression. This gigahertz-repetition-rate system is intended for ablation-cooled laser material removal in the 2 μm wavelength region, which is interesting for laser surgery due to the exceptionally high tissue absorption at this wavelength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app