Add like
Add dislike
Add to saved papers

Fine Regulation of Porous Architectures of Core-Shell Silica Nanocomposites Offers Robust Nanoprobes with Accelerated Responsiveness.

Probes bearing good aqueous solubility and biocompatibility as well as fast response can serve as ideal tools for evaluating the underlying molecular mechanism of endogenous production of H2 S caused by drugs; however, they are still lacking but highly desirable. Here, we demonstrate a novel strategy for constructing highly efficient H2 S nanoprobes through locking Förster resonance energy transfer borondipyrromethene (BODIPY) pairs in water-dispersible core-shell silica nanoparticles. Importantly, these nanocomposites can effectively confine complementary guests within the same cores due to the existence of a shield, thus guaranteeing efficient Förster resonance energy transfer. Interestingly, the interior microenvironment of such nanoparticles could be tuned by silylation agents. In this way, an ideal probe for rapid and ratiometric detection of H2 S within 15 s is established by optimizing the amount of silylation agent with a polar organic group. Obviously, the silylation agents are explored to serve as a platform not only for establishment of robust structures but also for optimizing the microenvironment of the interior to afford an ideal probe. These silica nanocomposites have also been successfully employed in disclosing the endogenous production of H2 S induced by estrogen in cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app