ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Structure and function of c-di-GMP riboswitches].

Cyclic diguanosine monophosphate (c-di-GMP) is a ubiquitous nucleotide second messenger present in a wide variety of bacteria. It regulates many important bacterial physiological functions such as biofilm formation, motility, adhesion, virulence and extracellular polysaccharide synthesis. It binds with many different proteins or RNA receptors, one of which is called riboswitch that is usually located at the 5'-untranslational region (5'-UTR) in some mRNA. Riboswitch usually comprises a specific ligand-binding (sensor) domain (named aptamer domain, AD), as well as a variable domain, termed expression platform (EP), to regulate expression of downstream coding sequences. When a specific metabolite concentration exceeds its threshold level, it will bind to its cognate riboswitch receptor to induce a conformational change of 5'-UTR, leading to modulation of downstream gene expression. Two classes of c-di-GMP-binding riboswitches (c-di-GMP-Ⅰ and c-di-GMP-Ⅱ) have been discovered that bind with this second messenger with high affinity to regulate diverse downstream genes, underscoring the importance of this unique RNA receptor in this pathway. Class Ⅰ c-di-GMP riboswitches are present in a wide variety of bacteria, and are most common in the phyla Firmicutes and Proteobacteria, while class Ⅱ c-di-GMP riboswitches typically function as allosteric ribozymes, binding to c-di-GMP to induce folding changes at atypical splicing site junctions to modulate downstream gene expression. This review introduces the discovery, classification, function, and also the affected downstream genes of c-di-GMP riboswitches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app