Add like
Add dislike
Add to saved papers

In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier.

Tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. Its chlorinated degradation by-products remain highly toxic. In this study, an anaerobic/aerobic permeable reactive barrier system consisting of four different functional layers was designed to remediate PCE-contaminated groundwater. The first (oxygen capture) layer maintained the dissolved oxygen (DO) concentration at < 1.35 mg/L in influent supplied to the second (anaerobic) layer. The third (oxygen-releasing) layer maintained DO concentration at > 11.3 mg/L within influent supplied to the fourth (aerobic) layer. The results show that 99% of PCE was removed, mostly within the second layer (anaerobic). Furthermore, the toxic by-products trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) were further degraded by 98, 90, and 92%, respectively, in layer 4 (aerobic). Thus, the designed anaerobic/aerobic permeable reactive barrier system could control both PCE and its degradation by-products, showing great potential as an efficient remediation alternative for the in situ treatment of PCE-contaminated groundwater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app