Add like
Add dislike
Add to saved papers

Prokaryotic diversity and biochemical properties in aging artificial pit mud used for the production of Chinese strong flavor liquor.

3 Biotech 2017 October
At present, artificial pit mud (APM) is widely used in Chinese liquor-making industry and plays a particular role in the production of Chinese strong flavor liquor (CSFL). However, APM frequently ages during fermentation, thus becoming unsuitable for sustainable use due to its low-quality. The reasons behind, and results of, APM aging during the production of CSFL are not yet understood. Sequencing the V4 region of the 16S rRNA gene shows that prokaryotic diversity is significantly decreased (Shannon's diversity index, P  < 0.01) and community composition is distinctly changed (from 1197 to 865 OTUs) in aging APM. On the phylum level, the increase of Firmicutes and decrease of Proteobacteria are the main consequences of APM aging during the production of CSFL. The counting of cultivatable bacteria confirmed that there was a large increase in Lactobacilli and aerobic spore-forming bacteria in aging low-quality APM (more than twofold). Unexpectedly, the total number of caproic acid-producing bacteria, mainly Clostridia , did not change significantly between the two kinds of APM. Furthermore, biochemical analysis indicates that the pH and the levels of NH4 + and K+ are decreased in aging low-quality APM ( P  < 0.01). The results obtained in this study support the possibility that environmental factors (pH, nutrients) induce the decrease of prokaryotic diversity, and the changed community composition influences the environmental properties. Therefore, through interfering with the cycle, APM aging can be controlled potentially by adjustment of environmental factors and/or supplementation of diminished or missed microorganisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app