Add like
Add dislike
Add to saved papers

Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil.

The physical, chemical, and biological processes forming the backbone of important soil functions (e.g., carbon sequestration, nutrient and contaminant storage, and water transport) take place at reactive interfaces of soil particles and pores. The accessibility of these interfaces is determined by the spatial arrangement of the solid mineral and organic soil components, and the resulting pore system. Despite the development and application of novel imaging techniques operating at the micrometer and even nanometer scale, the microstructure of soils is still considered as a random arrangement of mineral and organic components. Using nanoscale secondary ion mass spectroscopy (NanoSIMS) and a novel digital image processing routine adapted from remote sensing (consisting of image preprocessing, endmember extraction, and a supervised classification), we extensively analyzed the spatial distribution of secondary ions that are characteristic of mineral and organic soil components on the submicrometer scale in an intact soil aggregate (40 measurements, each covering an area of 30 μm × 30 μm with a lateral resolution of 100 nm × 100 nm). We were surprised that the 40 spatially independent measurements clustered in just two complementary types of micrometer-sized domains. Each domain is characterized by a microarchitecture built of a definite mineral assemblage with various organic matter forms and a specific pore system, each fulfilling different functions in soil. Our results demonstrate that these microarchitectures form due to self-organization of the manifold mineral and organic soil components to distinct mineral assemblages, which are in turn stabilized by biophysical feedback mechanisms acting through pore characteristics and microbial accessibility. These microdomains are the smallest units in soil that fulfill specific functionalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app