Add like
Add dislike
Add to saved papers

Role of M2 Macrophages in Sepsis-Induced Acute Kidney Injury.

Shock 2018 August
BACKGROUND: Sepsis is a major cause of acute kidney injury (AKI), with high rates of morbidity and mortality. M2 macrophages have been shown to play important roles in the secretion of anti-inflammatory and tissue repair mediators. In this study, we investigate the role of M2 macrophages in sepsis-induced AKI by depleting these cells in vivo through the systemic administration of liposomal clodronate (LC).

METHODS: Male Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP) or sham surgery. Biochemical and histological renal damage was assessed. Macrophage infiltration and M2 macrophage depletion were assessed by immunohistochemistry. RT-PCR was used to investigate the expression of the inducible nitric oxide synthase (iNOS), arginase 1 (Arg-1), and found in inflammatory zone 1 (FIZZ1) mRNAs. Western blots were performed to assay the tissue levels of interleukin-10 (IL-10) and tumor necrosis factor alpha (TNF-α).

RESULTS: M2 macrophages were obviously detected 72 h after sepsis-induced AKI. Kidney injury was more severe, renal function was decreased, and blood creatinine and blood urea nitrogen (BUN) levels were higher after M2 macrophage depletion. M2 macrophage depletion significantly inhibited the proliferation of tubular cells. M2 macrophage depletion also downregulated IL-10 expression and increased TNF-α secretion during sepsis-induced AKI.

CONCLUSIONS: M2 macrophages attenuate sepsis-induced AKI, presumably by upregulating IL-10 expression and suppressing TNF-α secretion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app