Add like
Add dislike
Add to saved papers

Divide-to-Conquer: A Kinetic Model for Singlet Oxygen Photosensitization.

Photosensitized singlet oxygen generation occurring in a PS-O2 complex, where PS is a photosensitizer chromophore, is a weakly coupled intermolecular energy-transfer process, a still challenging problem for theoretical chemistry. To investigate the reaction rate directly from quantum-chemical calculations, we built a semiclassical kinetic model that minimizes the computational effort for the calculation of diabatic couplings, activation energies, and reorganization energies, which are the components of the rate. The model splits the system into sets of orthogonal coordinates, which are then explored to compute the reaction rate. This model offers an effective way to evaluate the reaction probability of singlet oxygen generation along different directions and intramolecular distances of the PS-O2 complex. The model can also be applied to other similar intermolecular energy-transfer problems, to connect the reaction kinetics and quantum-chemical calculations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app