Add like
Add dislike
Add to saved papers

Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine.

Bioengineering 2016 November 4
The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful (13)C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app