Add like
Add dislike
Add to saved papers

A Proof-of-Concept Study: Simple and Effective Detection of P and T Waves in Arrhythmic ECG Signals.

Bioengineering 2016 October 18
A robust and numerically-efficient method based on two moving average filters, followed by a dynamic event-related threshold, has been developed to detect P and T waves in electrocardiogram (ECG) signals as a proof-of-concept. Detection of P and T waves is affected by the quality and abnormalities in ECG recordings; the proposed method can detect P and T waves simultaneously through a unique algorithm despite these challenges. The algorithm was tested on arrhythmic ECG signals extracted from the MIT-BIH arrhythmia database with 21,702 beats. These signals typically suffer from: (1) non-stationary effects; (2) low signal-to-noise ratio; (3) premature atrial complexes; (4) premature ventricular complexes; (5) left bundle branch blocks; and (6) right bundle branch blocks. Interestingly, our algorithm obtained a sensitivity of 98.05% and a positive predictivity of 97.11% for P waves, and a sensitivity of 99.86% and a positive predictivity of 99.65% for T waves. These results, combined with the simplicity of the method, demonstrate that an efficient and simple algorithm can suit portable, wearable, and battery-operated ECG devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app