Add like
Add dislike
Add to saved papers

An accurate comparative theoretical study of the interaction of furan, pyrrole, and thiophene with various gaseous analytes.

An accurate comparison of the interaction of furan, pyrrole, and thiophene with different gaseous analytes is vital not only for understanding the sensing mechanism of corresponding polymers but also for rational design of new materials. In the present study, DFT calculations at (M05-2X/Aug-cc-PVDZ) have been performed to investigate the interaction behavior of furan, pyrrole, and thiophene (as models for their corresponding polymers) with different analytes (NH3 , CO2 , CO, N2 H4 , HCN, H2 O2 , H2 S, CH4 , CH3 OH, SO2 , SO3 , H2 O). The interaction of heterocycles with analytes is illustrated by changes in geometric, energetic, and electronic properties. SAPT calculations were performed for energy decomposition analysis to study the contribution of non-covalent components of the total interaction energy for each complex. Analysis of energetic and electronic properties reveals that all heterocycles are highly sensitive to SO3 . The results suggest that sensing ability of polypyrrole is higher than polyfuran and polythiophene for all analytes. Graphical abstract SAPT0 energies (kcal mol-1 ) of furan, pyrrole, and thiophene with various gaseous analytesᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app