Journal Article
Review
Add like
Add dislike
Add to saved papers

Emerging Roles of Regulators of G Protein Signaling (RGS) Proteins in the Immune System.

The regulators of G protein signaling (RGS) proteins are a large, evolutionarily conserved group of intracellular proteins expressed in every cell type and tissue throughout the body including the immune system. Through their signature GTPase-activating protein (GAP) activity on heterotrimeric G proteins and interactions with signaling complexes and membrane constituents (e.g., lipids), RGS proteins determine the intensity and duration of G protein-coupled receptor-induced responses. They may also have a function in generating intracellular signaling gradients necessary for the directional migration of leukocytes to inflamed tissues containing local accumulations of chemoattractants. Although physiological functions of most RGS proteins in leukocytes and lymphoid organs are largely unknown, it appears thus far that deficiency of individual RGS proteins in mice does not affect homeostatic immune responses in the absence of immunogenic challenge and/or microbial infection. Although aberrant expression of some RGS proteins has been linked to dysregulated immunity and/or neoplasia in humans, there are no human diseases attributed to specific RGS dysfunction. Here, we highlight mostly published work describing expression and functions of the core group of RGS proteins that were among the first discovered, in both innate and adaptive immune processes, with particular emphasis on cell trafficking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app