Add like
Add dislike
Add to saved papers

Impact of difructose anhydride III, raffinose, and fructooligosaccharides on energy intake, gut hormones, and cecal fermentation in rats fed a high-fat and high-sucrose diet.

We investigated the effects of dietary supplementation of difructose anhydride III (DFA III), raffinose (Raf), and fructooligosaccharides (FOS) on diet-induced obesity development. Male rats were fed normal or high-fat and high-sucrose (HFS) diet, with or without supplementing (3%) DFA III, Raf, or FOS, for 8 or 5 weeks. Supplementing DFA III to the HFS diet decreased energy intake compared to the non-supplemented HFS diet. Accordingly, body weight gain and fat accumulation reduced in DFA III-fed rats. Cecal acetate production and plasma glucagon-like peptide-1 (GLP-1) and peptide-YY (PYY) were elevated in DFA III-fed rats, while Raf and FOS partially affected these parameters. These results demonstrate that DFA III has suppressive effect on excessive energy intake driven by the palatable obesogenic diet, possibly due to combined effects of increased anorexigenic factors such as cecal acetate production and GLP-1/PYY secretion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app