Add like
Add dislike
Add to saved papers

The Effects of Two Different Multivitamins on Aging Mice.

Investigating anti-aging factors that is more effective than antioxidants has important theoretical significance and application value. In search for nutritional ingredients that are more effective in anti-aging, two different multivitamins (multivitamin-1 at a dose of 2.5 mg/kg body weight [BW]/day; multivitamin-2 at a dose of 5.4 mg/kg BW/day) were administered to aging mice (N = 40) induced by D-galactose. The content or activity of the biochemical components associated with aging and anti-aging in the brain and the liver of the experimental mice was then determined for analysis of statistically significant difference among the groups. Results showed the mice in the aging model group exhibited obvious senility symptoms. However, the mice in the multivitamin-1 and multivitamin-2 groups were essentially similar to those of the control group, but were obviously better than the mice in the aging model group. Multivitamin-1 and multivitamin-2 decreased significantly the malondialdehyde (MDA) content and monoamine oxidase (MAO) activity (P < 0.01), and increased significantly the activity of glutathione peroxidase (GSH-Px), copper/zinc-superoxide dismutase (Cu/Zn-SOD) and manganese-superoxide dismutase (Mn-SOD) (P < 0.01) in the brain and the liver of the aging mice. There was no significant difference (P > 0.05) between the effects of the two multivitamins on the components associated with aging and anti-aging. In conclusions, this work showed that vitamins B₁, B₂, B₆ and PP (Nicotinic acid or vitamin B₃) play key roles in the anti-aging process of multivitamin-2. Vitamins B₁, B₂, B₆, and PP are more effective nutrients in anti-aging in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app