Add like
Add dislike
Add to saved papers

Scattering of biflagellate microswimmers from surfaces.

Physical Review. E 2017 August
We use a three-bead-spring model to investigate the dynamics of biflagellate microswimmers near a surface. While the primary dynamics and scattering are governed by geometric-dependent direct contact, the fluid flows generated by the swimmer locomotion are important in orienting it toward or away from the surface. Flagellar noise and in particular cell spinning about the main axis help a surface-trapped swimmer escape, whereas the time a swimmer spends at the surface depends on the incident angle. The dynamics results from a nuanced interplay of direct collisions, hydrodynamics, noise, and the swimmer geometry. We show that to correctly capture the dynamics of a biflagellate swimmer, minimal models need to resolve the shape asymmetry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app