Add like
Add dislike
Add to saved papers

Topological properties of adiabatically varied Floquet systems.

Physical Review. E 2017 August
Energy or quasienergy (QE) band spectra depending on two parameters may have a nontrivial topological characterization by Chern integers. Band spectra of one-dimensional (1D) systems that are spanned by just one parameter, a Bloch phase, are topologically trivial. Recently, an ensemble of 1D Floquet (time-periodic) systems, double-kicked rotors (DKRs) that are classically nonintegrable and depend on an external parameter, has been studied. It was shown that a QE band spanned by both the Bloch phase and the external parameter is characterized by a Chern integer. The latter determines the change in the mean angular momentum of a state in the band when the external parameter is adiabatically varied by a natural period. We show here, under conditions much more general than in previous works, that the ensemble of DKRs for all values of the external parameter corresponds to a 1D double-kicked particle (DKP) having translational invariance in the position-momentum phase plane. This DKP can be characterized by a second Chern integer, which is shown to be connected with the integer above for the DKR ensemble. This connection is expressed by a Diophantine equation (DE), which we derive. The DE, involving the band degeneracies of the DKR ensemble and of the DKP system, determines the allowed values of the DKR-ensemble integer. In particular, this integer is generically nonzero, showing the general topological nontriviality of the DKR ensemble.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app