Add like
Add dislike
Add to saved papers

Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH) 3 /Fe 3 O 4 nanocomposites.

Water Research 2017 December 2
The use of lanthanum (La)-based materials for phosphate removal from water and wastewater has received increasing attention. However, challenges remain to enhance phosphate sorption capacities and recover La-based sorbents. In this study, magnetic La(OH)3 /Fe3 O4 nanocomposites with varied La-to-Fe mass ratios were synthesized through a precipitation and hydrothermal method. Based upon preliminary screening of synthesized La(OH)3 /Fe3 O4 nanocomposites in terms of phosphate sorption capacity and La content, La(OH)3 /Fe3 O4 nanocomposite with a La-to-Fe mass ratio of 4:1 was chosen for further characterization and evaluation. Specifically, for these materials, magnetic separation efficiency, phosphate sorption kinetics and isotherm behavior, and solution matrix effects (e.g., coexisting ions, solution pH, and ionic strength) are reported. The developed La(OH)3 /Fe3 O4 (4:1) nanocomposite has an excellent magnetic separation efficiency of >98%, fast sorption kinetics of 30 min, high sorption capacity of 83.5 mg P/g, and strong selectivity for phosphate in presence of competing ions. Phosphate uptake by La(OH)3 /Fe3 O4 (4:1) was pH-dependent with the highest sorption capacities observed over a pH range of 4-6. The ionic strength of the solution had little interference with phosphate sorption. Sorption-desorption cyclic experiments demonstrated the good reusability of the La(OH)3 /Fe3 O4 (4:1) nanocomposite. In a real treated wastewater effluent with phosphate concentration of 1.1 mg P/L, 0.1 g/L of La(OH)3 /Fe3 O4 (4:1) efficiently reduced the phosphate concentration to below 0.05 mg P/L. Electrostatic attraction and inner-sphere complexation between La(OH)3 and P via ligand exchange were identified as the sorption mechanisms of phosphate by La(OH)3 /Fe3 O4 (4:1).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app