Add like
Add dislike
Add to saved papers

Macroscopic Superpositions as Quantum Ground States.

Physical Review Letters 2017 September 2
We study the question of what kind of a macroscopic superposition can(not) naturally exist as a ground state of some gapped local many-body Hamiltonian. We derive an upper bound on the energy gap of an arbitrary physical Hamiltonian provided that its ground state is a superposition of two well-distinguishable macroscopic "semiclassical" states. For a large class of macroscopic superposition states we show that the gap vanishes in the macroscopic limit. This in turn shows that preparation of such states by simple cooling to the ground state is not experimentally feasible and requires a different strategy. Our approach is very general and can be used to rule out a variety of quantum states, some of which do not even exhibit macroscopic quantum properties. Moreover, our methods and results can be used for addressing quantum marginal related problems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app