Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Selective Excitation of Cyanophenylalanine Fluorophores for Multi-Site Binding Studies.

Recently, it has been shown that nitrile-derivatized phenylalanines possess distinct fluorescent properties depending on the position of the cyano-group within the aromatic ring. These fluorophores have potential as probes for studying protein dynamics due to their sensitivity to local environment. Herein, we demonstrate that 2-cyanophenylalanine (Phe2CN ) and Phe4CN can independently monitor multiple sites during the Ca2+ dependent binding of a skeletal muscle myosin light chain kinase (MLCK) peptide fragment to the protein calmodulin (CaM). These cyano-probes were incorporated at two different positions along the peptide chain and monitored simultaneously via selective excitation of the two chromophores. The peptide was labeled with Phe4CN at a residue known to bind to a hydrophobic binding pocket of CaM, while Phe2CN was designed to acquire dynamics external to the binding pocket. By selectively exciting each of the chromophores, it was determined that the fluorescence emission of Phe4CN located at position 581 of MLCK was quenched in the presence of CaM, while no significant change in Phe2CN emission was observed at exposed position 594. The CaM binding affinity (Kd ) of the double labeled MLCK peptide was calculated to be approximately 64 nM, which is in agreement with previous measurements. These results indicate that multiple PheCN reporters within the same peptide can simultaneously detect variations in the local environment, and that these fluorophores could be utilized to investigate a wide variety of biological problems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app