Add like
Add dislike
Add to saved papers

Effect of gold nanoparticles on radiation doses in tumor treatment: a Monte Carlo study.

Radiotherapy is an extensively used treatment for most tumor types. However, ionizing radiation does not discriminate between cancerous and normal cells surrounding the tumor, which can be considered as a dose-limiting factor. This can lead to the reduction of the effectiveness of tumor cell eradication with this treatment. A potential solution to this problem is loading the tumor with high-Z materials prior to radiotherapy as this can induce higher toxicity in tumor cells compared to normal ones. New advances in nanotechnology have introduced the promising use of heavy metal nanoparticles to enhance tumor treatment. The primary studies showed that gold nanoparticles (GNPs) have unique characteristics as biocompatible radiosensitizers for tumor cells. This study aimed to quantify the dose enhancement effect and its radial dose distribution by Monte Carlo simulations utilizing the EGSnrc code for the water-gold phantom loaded with seven different concentrations of Au: 0, 7, 18, 30, 50, 75, and 100 mg-Au/g-water. The phantom was irradiated with two different radionuclide sources, Ir-192 and Cs-137, which are commonly used in brachytherapy, for all concentrations. The results exhibited that gold nanoparticle-aided radiotherapy (GNRT) increases the efficacy of radiotherapy with low-energy photon sources accompanied with high Au concentration loads of up to 30 mg-Au/g-water. Our finding conducts also to the detection of dose enhancement effects in a short average range of 650 μm outside the region loaded with Au. This can indicate that the location determination is highly important in this treatment method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app