Add like
Add dislike
Add to saved papers

Chromium, nickel, and cobalt in cosmetic matrices: an integrated bioanalytical characterization through total content, bioaccessibility, and Cr(III)/Cr(VI) speciation.

The presence of certain metals naturally contained inside raw materials (e.g., pigments) used to produce cosmetics for make-up may represent a serious concern for the final quality and safety of the product. The knowledge of the total concentration of metals is not sufficient to predict their reactivity and their toxicological profile. For these reasons, we set up a comprehensive approach to characterize the content of Co, Cr, and Ni in two raw materials for cosmetic production, a black iron oxide and a pearly pigment, and in a finished product, pearly powder eye shadow. Namely, besides the total metal concentrations, the speciation of chromium and the bioaccessibility of the three metals were assessed. Since no standard method is so far available for hexavalent chromium extraction from cosmetic samples, three approaches were compared (EPA 3060A method, IRSA 16 method, and a Na3 PO4 extraction). Results show that Na3 PO4 extraction is the most selective one. Cr(VI) was undetectable in black iron oxide and present at very low concentrations (about 0.3 mg/kg) in pearly pigment and in the pearly powder eye shadow samples. The extracted Cr(VI) concentrations are not related to the total Cr content in the samples. Bioaccessibility studies were performed by in vitro extractions with synthetic lacrimal fluids and sweat. Despite the wide range of metal concentrations in the samples, the amounts of bioaccessible elements were undetectable or very low (less than 0.4 mg/kg), thus suggesting that metals in the three samples are present in inert forms. Graphical abstract The possible leaching of metals from cosmetics to biological fluids. Spectroscopic and chromatographic techniques provide complementary information for an integrated bioanalytical approach to risk characterization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app