Add like
Add dislike
Add to saved papers

Investigation on the Behavior of Noise in Asynchronous Spectra in Generalized Two-Dimensional (2D) Correlation Spectroscopy and Application of Butterworth Filter in the Improvement of Signal-to-Noise Ratio of 2D Asynchronous Spectra.

The behavior of noise in asynchronous spectrum in generalized two-dimensional (2D) correlation spectroscopy is investigated. Mathematical analysis on the noise of 2D spectra and computer simulation on a model system show that the fluctuation of noise in a 2D asynchronous spectrum can be characterized by the standard deviation of noise in 1D spectra. Furthermore, a new approach to improve a signal-to-noise ratio of 2D asynchronous spectrum by a Butterworth filter is developed. A strategy to determine the optimal conditions is proposed. Computer simulation on a model system indicates that the noise of 2D asynchronous spectrum can be significantly suppressed using the Butterworth filtering. In addition, we have tested the approach to a real chemical system where interaction between berberine and β-cyclodextrin is investigated using 2D UV-vis asynchronous spectra. When artificial noise is added, cross peaks that reflect intermolecular interaction between berberine and β-cyclodextrin are completely masked by noise. After the method described in this article is utilized, noise is effectively suppressed, and cross peaks are faithfully recovered. The above result demonstrates that the approach described in this article is applicable in real chemical systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app