Add like
Add dislike
Add to saved papers

Thermoresponsive Mobile Interfaces with Switchable Wettability, Optical Properties, and Penetrability.

Liquid-based mobile interfaces, in which liquids are being utilized as structural long-term components, have shown their multifunctionality in materials science, such as the hydration layer of polyelectrolyte brushes used for artificial implants, stabilized lubricants for antibiofouling, anti-icing, self-cleaning, optical control, and so forth. However, these currently available systems do not usually show a response to environmental stimuli. Here, we describe a strategy for preparing thermoresponsive mobile interfaces made from novel silicone-based lubricants that display lower critical solution temperature and demonstrate their capabilities on controlling in situ water wetting and dewetting, thermo-gating penetration, and optical properties. These properties allow the mobile films to form a kind of erasable recording platforms. We foresee diverse applications in liquid transport, wetting and adhesion control, and transport switching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app