Add like
Add dislike
Add to saved papers

Catalytic Layer Optimization for Hydrogen Permeation Membranes Based on La 5.5 WO 11.25-δ /La 0.87 Sr 0.13 CrO 3-δ Composites.

(LWO/LSC) composite is one of the most promising mixed ionic-electronic conducting materials for hydrogen separation at high temperature. However, these materials present limited catalytic surface activity toward H2 activation and water splitting, which determines the overall H2 separation rate. For the implementation of these materials as catalytic membrane reactors, effective catalytic layers have to be developed that are compatible and stable under the reaction conditions. This contribution presents the development of catalytic layers based on sputtered metals (Cu and Pd), electrochemical characterization by impendace spectroscopy, and the study of the H2 flow obtained by coating them on 60/40-LWO/LSC membranes. Stability of the catalytic layers is also evaluated under H2 permeation conditions and CH4 -containing atmospheres.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app