Add like
Add dislike
Add to saved papers

Unexpected Tribological Synergy in Polymer Blend Coatings: Leveraging Phase Separation to Isolate Domain Size Effects and Reduce Friction.

We employed a systematic processing approach to control phase separation in polymer blend thin films and significantly reduce dynamic friction coefficients (μ)s. We leveraged this modulation of phase separation to generate composite surfaces with dynamic friction coefficients that were substantially lower than expected on the basis of simple mixing rules, and in several cases, these friction coefficients were lower than those of both pure components. Using a model polyisoprene [PI]/polystyrene [PS] composite system, a minimum μ was found in films with PS mass fractions between 0.60 and 0.80 (μblend = 0.11 ± 0.03); that value was significantly lower than the friction coefficient of PS (μPS = 0.52 ± 0.01) or PI (μPI = 1.3 ± 0.09) homopolymers and was comparable to the friction coefficient of poly(tetrafluoroethylene) [PTFE] (μPTFE = 0.09 ± 0.01) measured under similar conditions. Additionally, through experiments in which the domain size was systematically varied at constant composition (through an annealing process), we demonstrated that μ decreased with decreasing characteristic domain size. Thus, the tribological synergy between PS and PI domains (discrete size, physical domain isolation, and overall film composition) was shown to play an integral role in the friction and wear of these PS/PI composites. Overall, our results suggest that even high friction polymers can be used to create low friction polymer blends by following appropriate design rules and demonstrate that engineering microstructure is critical for controlling the friction and adhesion properties of composite films for tribologically relevant coatings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app