Add like
Add dislike
Add to saved papers

Rosmarinic acid down-regulates NO and PGE 2 expression via MAPK pathway in rat chondrocytes.

Rosmarinic acid (RosA) is a water-soluble polyphenol, which can be isolated from many herbs such as orthosiphon diffuses and rosmarinus officinalis. Previous studies have shown that RosA possesses various biological properties. In this study, we investigate the anti-osteoarthritic effects of RosA in rat articular chondrocytes. Chondrocytes were pre-treated with RosA, followed by the stimulation of IL-1β. Real-time PCR and Western blot were performed to detect the expression of matrix metalloproteinase (MMP)-1, MMP-3 and MMP-13. Nitric oxide and PGE2 production were measured by Griess reagent and enzyme-linked immunosorbent assay (ELISA). The expression of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) was also investigated by Western blot analysis. We found that RosA down-regulated the MMPs expression as well as nitric oxide and PGE2 production in IL-1β-induced chondrocytes. In addition, RosA inhibited p38 and JNK phosphorylation as well as p65 translocation. The results suggest that RosA may be considered a possible agent in the treatment of OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app