Add like
Add dislike
Add to saved papers

A full-pivoting algorithm for the Cholesky decomposition of two-electron repulsion and spin-orbit coupling integrals.

A significant reduction in the computational effort for the evaluation of the electronic repulsion integrals (ERI) in ab initio quantum chemistry calculations is obtained by using Cholesky decomposition (CD), a numerical procedure that can remove the zero or small eigenvalues of the ERI positive (semi)definite matrix, while avoiding the calculation of the entire matrix. Conversely, due to its antisymmetric character, CD cannot be directly applied to the matrix representation of the spatial part of the two-electron spin-orbit coupling (2e-SOC) integrals. Here, we present a computational strategy to achieve a Cholesky representation of the spatial part of the 2e-SOC integrals, and propose a new efficient CD algorithm for both ERI and 2e-SOC integrals. The proposed algorithm differs from previous CD implementations by the extensive use of a full-pivoting design, which allows a univocal definition of the Cholesky basis, once the CD δ threshold is made explicit. We show that 2δ is the upper limit for the errors affecting the reconstructed 2e-SOC integrals. The proposed strategy was implemented in the ab initio program Computational Emulator of Rare Earth Systems (CERES), and tested for computational performance on both the ERI and 2e-SOC integrals evaluation. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app