Add like
Add dislike
Add to saved papers

Asymmetric dimethylarginine downregulates sarco/endoplasmic reticulum calcium‑ATPase 3 and induces endoplasmic reticulum stress in human umbilical vein endothelial cells.

Cardiovascular disease is the leading cause of mortality in patients with chronic kidney disease. Endothelial cell injury and apoptosis may promote atherosclerosis and cardiovascular disease. The present study investigated the potential mechanisms of asymmetric dimethylarginine (ADMA)‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). It was demonstrated that ADMA decreased B‑cell lymphoma‑2 expression and increased cleaved‑caspase‑3 expression. Furthermore, terminal deoxynucleotidyl transferase (TdT)‑mediated‑digoxigenin‑11‑dUTP nick end labeling results indicated that ADMA induced apoptosis in HUVECs. These results suggest a potential mechanism of ADMA‑induced endothelial cell injury. It was also verified that ADMA induced the expression of phosphorylated protein kinase RNA‑like ER kinase, inositol requiring enzyme‑1, C/EBP homologous protein and glucose‑regulated protein, indicating activation of the endoplasmic reticulum (ER) stress response. Impaired function of sarco/endoplasmic reticulum calcium‑ATPase (SERCA) is considered a major contributor to ER stress. It was demonstrated that ADMA induced a significant downregulation of SERCA3, however not SERCA2b. Overall, the results indicated that ADMA induced apoptosis in HUVECs, and that this effect was closely associated with induction of ER stress and decreased SERCA3 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app