Add like
Add dislike
Add to saved papers

H2O2 induces caveolin‑1 degradation and impaired mitochondrial function in E11 podocytes.

Increased intercellular reactive oxygen species (ROS) levels are the major cause of podocyte injury with proteinuria. Caveolin‑1 (CAV‑1) is an essential protein component of caveolae. CAV‑1 participates in signal transduction and endocytic trafficking. Recent research has indicated that CAV‑1 regulates oxidative stress‑induced pathways. The present study used hydrogen peroxide (H2O2) at nontoxic concentrations to elevate the level of ROS in E11 podocytes. Treatment with 500 and 1,000 µM H2O2 for 1 h significantly reduced CAV‑1 expression levels. Simultaneously, the treatment significantly reduced the expression of the antioxidant enzymes glutamine‑cysteine ligase catalytic subunit, superoxide dismutase 2 and catalase. To determine the role of CAV‑1 in mediating oxidative stress, E11 podocytes were administered antenapedia‑CAV‑1 (AP‑CAV‑1) peptide for 48 h. The AP‑CAV‑1 treatment enhanced CAV‑1 expression and inhibited cyclophilin A expression, thus reducing ROS‑induced inflammation. Moreover, CAV‑1 protected against H2O2‑induced oxidative stress responses by enhancing the expression of antioxidant enzymes. Furthermore, CAV‑1 attenuated H2O2‑induced changes oxidative phosphorylation, and the expression of optic atrophy 1 and translocase of the inner membrane 23, as well as preserving mitochondrial function. CAV‑1 treatment significantly suppressed apoptosis, as indicated by a higher B‑cell lymphoma 2/BCL2‑associated X protein ratio. Therefore, enhancing the expression of CAV‑1 may be an important therapeutic consideration in treating podocyte injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app