Add like
Add dislike
Add to saved papers

T2-Weighted Magnetic Resonance Imaging of Hepatic Tumor Guided by SPIO-Loaded Nanostructured Lipid Carriers and Ferritin Reporter Genes.

Nowadays, there is a high demand for supersensitive contrast agents for the early diagnostics of hepatocarcinoma. It has been recognized that accurate imaging information is able to be achieved by constructing hepatic tumor specific targeting probes, though it still faces challenges. Here, a AGKGTPSLETTP peptide (A54)-functionalized superparamagnetic iron oxide (SPIO)-loaded nanostructured lipid carrier (A54-SNLC), which can be specifically uptaken by hepatoma carcinoma cell (Bel-7402) and exhibited ultralow imaging signal intensity with varied Fe concentration on T2-weighted imaging (T2WI), was first prepared as an effective gene carrier. Then, an endogenous ferritin reporter gene for magnetic resonance imaging (MRI) with tumor-specific promoter (AFP-promoter) was designed, which can also exhibit a decrease in signal intensity on T2WI. At last, using protamine as a cationic mediator, novel ternary nanoparticle of A54-SNLC/protamine/DNA (A54-SNPD) as an active dual-target T2-weighted MRI contrast agent for imaging hepatic tumor was achieved. Owing to the synergistic effect of A54-SNLC and AFP-promoted DNA targeting with Bel-7402 cells, T2 imaging intensity values of hepatic tumors were successfully decreased via the T2 contrast enhancement of ternary nanoparticles. It is emphasized that the novel A54-SNPD ternary nanoparticle as active dual-target T2-weighted MRI contrast agent were able to greatly increase the diagnostic sensitivity and specificity of hepatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app